
ROBOTICS

Application manual
MultiMove

Trace back information:
Workspace 25A version a8
Checked in 2025-02-24
Skribenta version 5.6.018

Application manual
MultiMove

RobotWare 7.18

Document ID: 3HAC089689-001
Revision: C

© Copyright 2004-2025 ABB. All rights reserved.
Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damage to persons
or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Keep for future reference.
Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2004-2025 ABB. All rights reserved.
Specifications subject to change without notice.

Table of contents
7Overview of this manual ...

91 Introduction
91.1 About MultiMove ...

111.2 Terminology ...
121.3 Example applications ...
121.3.1 About the example applications ...
131.3.2 Example with unsynchronized movements ...
141.3.3 Example with synchronized movements ..

152 Installation
152.1 Hardware installation ...
182.2 Software installation ..

213 Configuration
213.1 Configuration overview ...
223.2 System parameters ...
223.2.1 Controller topic ..
243.2.2 Motion topic ...
253.3 Configuration examples ..
253.3.1 Configuration for example with unsynchronized movements
273.3.2 Configuration for example with synchronized movements

294 Calibration
294.1 Calibration overview ..
304.2 Relative calibration ..
324.3 Calibration chains ...
334.4 Examples of coordinate systems ..
334.4.1 Example with unsynchronized movements ...
344.4.2 Example with synchronized movements ..

355 User interface specific for MultiMove
355.1 FlexPendant for MultiMove configuration ...
365.2 FlexPendant apps ...
375.3 Select which tasks to start with START button ..

396 Programming
396.1 RAPID components ...
426.2 Tasks and programming techniques ...
436.3 Coordinated work objects ...
446.4 Independent movements ..
446.4.1 About independent movements ...
456.4.2 Example with independent movements ...
476.5 Semi coordinated movements ...
476.5.1 About semi coordinated movements ...
486.5.2 Example with semi coordinated movements ...
536.5.3 Considerations and limitations when using semi coordinated movements
556.6 Coordinated synchronized movements ..
556.6.1 About coordinated synchronized movements ...
566.6.2 Example with coordinated synchronized movements
596.7 Program execution ..
596.7.1 Corner zones ..
616.7.2 Synchronization behavior ...
626.7.3 Dummy instructions ...
636.7.4 Motion principles ...

Application manual - MultiMove 5
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

Table of contents

646.7.5 Modify position ...
656.7.6 Moving a program pointer ...
666.7.7 Tool orientation at circular movements ..
676.7.8 Applications affected by MultiMove ...
686.8 Programming recommendations ..

717 RAPID error recovery
717.1 Error recovery for MultiMove ...
727.2 Simple error recovery example ..
737.3 Asynchronously raised errors ...
757.4 Example of creating asynchronously raised error ..
777.5 Example with movements in error handler ...

79Index

6 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

Table of contents

Overview of this manual
About this manual

This manual contains information about the RobotWare options MultiMove
Independent and MultiMove Coordinated. The latter includes some extended
functionality. Unless something else is specified, MultiMove refers to both these
options.

Note

It is the responsibility of the integrator to provide safety and user guides for the
robot system.

Usage
This manual can be used either as a brief description to find out if MultiMove is
the right choice for solving a problem, or as a description of how to use it. This
manual provides information about system parameters and RAPID components
related to MultiMove, and many examples of how to use them. The details regarding
syntax for RAPID components, and similar, are not described here, but can be
found in the respective reference manual.

Who should read this manual?
This manual is mainly intended for robot programmers.

Prerequisites
The reader should...

• be familiar with industrial robots and their terminology.
• be familiar with the RAPID programming language.
• be familiar with system parameters and how to configure them.
• be familiar with the option Multitasking.

Note

Before any work on or with the robot is performed, the safety information in the
product manual for the controller and robot/manipulator must be read.

References

Document IDReference

3HAC065040-001Technical reference manual - RAPID Overview

3HAC065038-001Technical reference manual - RAPID Instructions, Functions and
Data types

3HAC065039-001Technical reference manual - RAPID kernel

3HAC065036-001Operating manual - OmniCore

3HAC032104-001Operating manual - RobotStudio

3HAC089065-001Product manual - OmniCore C90XT Type A

Continues on next page
Application manual - MultiMove 7
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

Overview of this manual

Document IDReference

3HAC087112-001Product manual - OmniCore V250XT Type B

3HAC081697-001Product manual - OmniCore V400XT

3HAC065041-001Technical reference manual - System parameters

3HAC066554-001Application manual - Controller software OmniCore

3HAC066559-001Application manual - Functional safety and SafeMove

3HAC084370-001Application manual - ArcWare for OmniCore

Revisions

DescriptionRevision

Released with RobotWare 7.15.A

Released with RobotWare 7.16.
• Updated section Installation on page 15.
• Added information for OmniCore C90XT Type A.

B

Released with RobotWare 7.18.
• Added safety data for OmniCore C90XT.

C

8 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

Overview of this manual
Continued

1 Introduction
1.1 About MultiMove

Purpose
The purpose of MultiMove is to let one robot controller handle several mechanical
units. This allows advanced coordination.
A MultiMove option can consist of:

• Up to three cabinets, each powering one manipulator, and up to in total six
additional axes, that is, max 24 axes.

• Up to seven motion tasks
Some examples of applications:

• Several robots can work synchronized on the same work object.
• One robot can move a work object while other manipulators work on it.
• Several robots can cooperate to lift heavy objects.

Included functionality
MultiMove allows up to 7 tasks to be motion tasks (RAPID task that is allowed to
execute movement instructions). One controller can handle up to 3 manipulators.
Additional axes can be handled by separate tasks.
The option MultiMove Independent allows:

• Independent movements (see About independent movements on page 44)
• Semi-coordinated movements (see About semi coordinated movements on

page 47)
The option MultiMove Coordinated allows:

• Coordinated synchronized movements (seeAbout coordinated synchronized
movements on page 55)

Included options
The MultiMove option includes the following options:

• Multitasking
• Multiple Axis Positioner (for the option MultiMove Coordinated)

Basic approach
This is the approach for a basic MultiMove configuration.

1 Install hardware and software (see Installation on page 15).
2 Configure system parameters (see Configuration on page 21).
3 Calibrate coordinate systems (see Calibration on page 29).
4 Write RAPID program for each task (see Programming on page 39).

Continues on next page
Application manual - MultiMove 9
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

1 Introduction
1.1 About MultiMove

MultiMove and ISO 10218-1:2011
MultiMove is an option allowing up to three manipulators to be controlled from a
single controller. In the context of ISO 10218-1, the ABB MultiMove configuration
is considered to be one robot.
A risk assessment, as outlined in ISO 10218-2, shall always be performed on the
robot cell.

10 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

1 Introduction
1.1 About MultiMove
Continued

1.2 Terminology

About these terms
Some words have a specific meaning when used in this manual. It is important to
understand exactly what is meant by these words. This manual's definition of these
words are listed below.

Term list

ExplanationTerm

A robot that is coordinated to a work object will follow the
movements of that work object.

Coordination

Movements that are simultaneous. Synchronization refers
to a similarity in time, not in room coordinates.

Synchronization

A mechanical unit without tool center point, which can only
handle joint movements. A positioner is a mechanical unit,
with one or several axes, that holds and moves a work object.

Positioner

Manipulator(s), controller, and teach pendant.Robot
A manipulator is a mechanical unit with tool center point,
and often referred to as a robot.

Robot with application equipment forming a complete applic-
ation.

Robot system

The same as a program. It is just a way of specifying that it
is a program for one specific task.

Task program

Application manual - MultiMove 11
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

1 Introduction
1.2 Terminology

1.3 Example applications

1.3.1 About the example applications

Consistent examples
In this manual there are examples for configuration, RAPID code etc. The first
example shows unsynchronized movements and the second shows synchronized
movements. Both can be applied for various process applications.

12 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

1 Introduction
1.3.1 About the example applications

1.3.2 Example with unsynchronized movements

About the example
In this example, two robots work independently on one work piece for each robot.
They do not cooperate in any way and do not have to wait for each other.

Illustration

xx0300000590

Application manual - MultiMove 13
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

1 Introduction
1.3.2 Example with unsynchronized movements

1.3.3 Example with synchronized movements

About the example
In this example, two robots cooperate on the same work piece. The work object is
rotated by a positioner. If the positioner stands still during the robot's operation
on the work piece, they are operating semi-coordinated. If the piece is moved
together with the robots, the system is synchronized.

Illustration

xx0300000594

14 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

1 Introduction
1.3.3 Example with synchronized movements

2 Installation
2.1 Hardware installation

Main controller and additional controller
The option MultiMove enables one controller to handle several mechanical units.
The main controller can be connected to up to two additional controllers. The ABB
MultiMove configuration is considered to be one robot. This means that all axes
are running in the same operating mode.

xx2500000106

Note

This manual only describes the principles for a MultiMove installation. For details
about installation of the controllers and connecting them, see the product manual
for the robot controller, listed in References on page 7.

Harness output Harness output Harness input

Signal exchange proxy

(no safety signals)

Signal exchange proxy

(no safety signals)

Main

computer

(safety signals)

Harness input

Main controller Additional controller Additional controller

xx2400000971

Continues on next page
Application manual - MultiMove 15
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

2 Installation
2.1 Hardware installation

The main computer in the main controller is used for all manipulators in the
MultiMove configuration. The additional controller does not have a main computer,
but a robot signal exchange proxy that handles the communication with the main
computer in the main controller.
The safety signals are connected to the main controller.

Note

When switching on the power to the controllers, turn on the main controller last.
When switching off the power to the controllers, turn off the main controller first.

Cabling
Each controller has its own mains power cable and floor cable to its manipulator.
The communication between the controllers is handled with Ethernet and EtherCAT
cables, combined in one harness. Ethernet is used for auxiliary functions, while
EtherCAT is used for the drive system and safety signals.

CAUTION

The cables between the controllers shall be considered in the security analysis
of the installation, seeOperatingmanual - Integrator's guide OmniCore for general
guidance.

CAUTION

Before commencing service work on a controller in a MultiMove installation,
ensure that the main power has been switched off for all MultiMove controllers.
When switching off the power to the controllers, turn off the main controller first.

Safety data
The safety data for the respective controller is described in their respective product
manual. For the option MultiMove, the safety data for all controllers in the MultiMove
robot must be calculated. The principle is the same for all OmniCore controllers.

V line
When the main controller is a V line controller, use the following procedure to
calculate the safety data for the option MultiMove.

1 For each additional controller, increase the PFH value by 8,58E-08.
2 For each additional drive unit, increase the PFH value by 4,29E-08.

C line
When the main controller is a C90XT controller, use the following procedure to
calculate the safety data for the MultiMove robot.

1 For each additional controller, increase the PFH value by 8,58E-08.
2 For each additional drive unit, increase the PFH value by 4,29E-08.

Continues on next page
16 Application manual - MultiMove

3HAC089689-001 Revision: C
© Copyright 2004-2025 ABB. All rights reserved.

2 Installation
2.1 Hardware installation
Continued

Visual identification
In a MultiMove robot, it is extra important to mark each mechanical unit, manipulator,
controller, cables, and other equipment so that they are easy to identify.

Related information
See the product manual for the respective controller, listed in References on
page 7.

Application manual - MultiMove 17
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

2 Installation
2.1 Hardware installation

Continued

2.2 Software installation

RobotWare system
On delivery, the main robot is configured in the main controller. This robot system
must be updated with the additional robots using the Modify Installation
functionality in RobotStudio.
The system options are selected on the main controller. Then each additional
controller is configured individually.
If positioners, track motions, or ABB MUGU products are included, then these
add-ins must be installed and configured.

Modify the MultiMove software system
A full description of the Modify Installation dialog is described in Operating
manual - Integrator's guide OmniCore.
Use this procedure to modify a MultiMove system.

1 Open the Modify Installation dialog.
2 In the tab Options, click Motion Coordination and then select one of the

MultiMove options.
This enables a new dropdown list and tabs for each manipulator. The
controller and manipulator options are moved to these new tabs.

xx2400000733

3 Select number of manipulators in the dropdown list to display tabs for the
selected number of manipulators.

4 Modify all system options in the first tab (with controller icon).
5 Configure the controllers on each manipulator tab. Select the variant of the

controller and the manipulator respectively.
6 A positioner or other additional axis is configured as part of the robot

configuration.

Continues on next page
18 Application manual - MultiMove

3HAC089689-001 Revision: C
© Copyright 2004-2025 ABB. All rights reserved.

2 Installation
2.2 Software installation

Configure SafeMove
If SafeMove is used, each manipulator should be configured as described in
Application manual - Functional safety and SafeMove. If needed, a mechanical unit
can be disabled, using the function Safe Disable of Drive Unit.

Automatic configuration
Some configurations (system parameters) are automatically set up according to
the installed licenses. For each manipulator, the following are configured:

• Task
• Mechanical Unit Group
• Mechanical Unit
• Motion Planner

For more information about these system parameter types, see System parameters
on page 22.

CAUTION

A motion planner (type Motion Planner), created by the installation process, is
configured to optimize the movement for its specific robot. If the default
configuration is changed so that a robot uses the wrong motion planner, the
robot motion will be affected.

Related information
See also:

• Operating manual - Integrator's guide OmniCore
• Operating manual - OmniCore
• Application manual - Additional axes

Application manual - MultiMove 19
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

2 Installation
2.2 Software installation

Continued

This page is intentionally left blank

3 Configuration
3.1 Configuration overview

About the system parameters
This chapter contains a brief description of each parameter that is specific for the
option MultiMove. For more information about system parameters not specific for
the MultiMove options, see Technical reference manual - System parameters.
The system parameters are configured using the Configuration Editor in
RobotStudio, see Operating manual - RobotStudio.

About the examples
The examples cover the topics Controller and Motion, since these are related to
the number of manipulators, physical constellation, of the robot. The last example
covers the topic I/O System.

Application manual - MultiMove 21
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

3 Configuration
3.1 Configuration overview

3.2 System parameters

3.2.1 Controller topic

Task
These parameters belong to the type Task in the topic Controller:

DescriptionParameter

The name of the task.Task
Note that the name of the task must be unique. This means that it cannot
have the same name as the mechanical unit, and no variable in the
RAPID program can have the same name.

Controls the start/stop and system restart behavior:
• NORMAL - The task program is manually started and stopped

(e.g. from the FlexPendant). The task stops at emergency stop.
• STATIC - At a restart the task program continues from where it

was. The task program cannot be stopped from the FlexPendant
or by emergency stop.

• SEMISTATIC - The task program starts from the beginning at re-
start. The task program cannot be stopped from the FlexPendant
or by emergency stop.

A task that controls a mechanical unit must be of the type NORMAL.

Type

Indicates whether the task program can control a mechanical unit with
RAPID move instructions.

MotionTask

Defines which mechanical unit group is used for the task.Use Mechanical
Unit Group Use Mechanical Unit Group refers to the parameter Name for the type

Mechanical Unit Group.
A motion task (MotionTask set to Yes) controls the mechanical units in
the mechanical unit group. A non-motion task (MotionTask set to No)
will still be able to read values (e.g. the TCP position) for the active
mechanical units in the mechanical unit group.
Note that Use Mechanical Unit Group must be defined for all tasks, even
if the task does not control any mechanical unit.

Mechanical Unit Group
A mechanical unit group must contain at least one mechanical unit, robot or other
mechanical unit (i.e. both Robot and Mech Unit 1 cannot be left empty).
These parameters belong to the typeMechanical Unit Group in the topicController:

DescriptionParameter

The name of the mechanical unit group.Name

Specifies the robot (with TCP), if there is any, in the mechanical unit group.Robot
Robot refers to the parameter Name for the type Mechanical Unit in the
topic Motion.

Specifies a mechanical unit without TCP, if there is any, in the mechanical
unit group.

Mech Unit 1

Mech Unit 1 refers to the parameter Name for the type Mechanical Unit in
the topic Motion.

Specifies the second mechanical unit without TCP, if there are more than
one, in the mechanical unit group.

Mech Unit 2

Mech Unit 2 refers to the parameter Name for the type Mechanical Unit
in the topic Motion.

Continues on next page
22 Application manual - MultiMove

3HAC089689-001 Revision: C
© Copyright 2004-2025 ABB. All rights reserved.

3 Configuration
3.2.1 Controller topic

DescriptionParameter

Specifies the third mechanical unit without TCP, if there are more than two,
in the mechanical unit group.

Mech Unit 3

Mech Unit 3 refers to the parameter Name for the type Mechanical Unit
in the topic Motion.

Specifies the fourth mechanical unit without TCP, if there are more than
three, in the mechanical unit group.

Mech Unit 4

Mech Unit 4 refers to the parameter Name for the type Mechanical Unit in
the topic Motion.

Specifies the fifth mechanical unit without TCP, if there are more than four,
in the mechanical unit group.

Mech Unit 5

Mech Unit 5 refers to the parameter Name for the type Mechanical Unit in
the topic Motion.

Specifies the sixth mechanical unit without TCP, if there are more than
five, in the mechanical unit group.

Mech Unit 6

Mech Unit 6 refers to the parameter Name for the type Mechanical Unit in
the topic Motion.

Defines which motion planner is used for calculating the movements of
this mechanical unit group.

Use Motion
Planner

Use Motion Planner refers to the parameter Name for the type Motion
Planner in the topic Motion.

Application manual - MultiMove 23
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

3 Configuration
3.2.1 Controller topic

Continued

3.2.2 Motion topic

Mechanical Unit
These parameters belong to the type Mechanical Unit in the topic Motion:

DescriptionParameter

The name of the mechanical unit.Name

The parameter defines if the mechanical unit is allowed to move
user frames.

Allow move of user frame

The parameter defines if the mechanical unit shall be active
when the controller starts up.

Activate at Start Up

The parameter defines if it is allowed to deactivate the mechan-
ical unit.

Deactivation Forbidden

Motion Planner
A motion planner calculates the movements of a mechanical unit group. When
several tasks are in synchronized movement mode they use the same motion
planner (the first of the involved motion planners), see pictures in the following
examples.
At installation a Motion Planner is set up for each robot. The Motion Planner is
configured to optimize the motion for that specific robot. Do not change connection
between robot and Motion Planner.

Motion System
This parameter belongs to the type Motion System in the topic Motion.

DescriptionParameter

This parameter is only valid for systems using the MultiMove
option. If this parameter is set to TRUE, detected collisions will
be handled independently in RAPID tasks that are executed
independently.

Ind collision stop without
brake

24 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

3 Configuration
3.2.2 Motion topic

3.3 Configuration examples

3.3.1 Configuration for example with unsynchronized movements

About this example
This is an example of how to configure the example with unsynchronized
movements, two independent robots. The robots are handled by one task each.

Task

Use Mechanical Unit GroupMotionTaskTypeTask

rob1YesNORMALT_ROB1

rob2YesNORMALT_ROB2

Mechanical Unit Group

Use Motion PlannerMech Unit 1RobotName

motion_planner_1ROB_1rob1

motion_planner_2ROB_2rob2

Motion Planner

Speed Control WarningName

Nomotion_planner_1

Nomotion_planner_2

Continues on next page
Application manual - MultiMove 25
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

3 Configuration
3.3.1 Configuration for example with unsynchronized movements

Illustration

en0400000773

26 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

3 Configuration
3.3.1 Configuration for example with unsynchronized movements
Continued

3.3.2 Configuration for example with synchronized movements

About this example
This is an example of how to configure the example with synchronized movements,
two robots and a positioner. These three mechanical units are handled by one task
each.

Task

Use Mechanical Unit GroupMotionTaskTypeTask

rob1YesNORMALT_ROB1

rob2YesNORMALT_ROB2

stn1YesNORMALT_STN1

Mechanical Unit Group

Use Motion PlannerMech Unit 1RobotName

motion_planner_1ROB_1rob1

motion_planner_2ROB_2rob2

motion_planner_3STN_1stn1

Motion Planner

Speed Control PercentSpeed Control WarningName

90Yesmotion_planner_1

90Yesmotion_planner_2

Nomotion_planner_3

Mechanical Unit

Deactivation ForbiddenActivate at Start UpAllow move of user
frame

Name

YesYesYesROB_1

YesYesYesROB_2

NoYesYesSTN_1

Continues on next page
Application manual - MultiMove 27
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

3 Configuration
3.3.2 Configuration for example with synchronized movements

Illustration

en0400000774

28 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

3 Configuration
3.3.2 Configuration for example with synchronized movements
Continued

4 Calibration
4.1 Calibration overview

Two types of calibration
There are two types of calibration that must be done for a MultiMove configuration:

1 Joint calibration ensures that all axes are in correct position. Normally this
is done before delivery of a new robot and only requires recalibration after
repairing the robot. For more information, see the product manual for the
respective robot.

2 Calibration of coordinate systems must be made when the robot is in place.
A brief description of what coordinate systems to calibrate and in which order
is presented below.

Calibrate coordinate systems
First of all you must decide what coordinate systems to use and how to place their
origins and directions. For examples of suitable coordinate systems, see Examples
of coordinate systems on page 33.
The coordinate systems are then calibrated in the following order:

Action

Calibrate the tool. This includes calibration of TCP and load data. For description
of how to calibrate the tool, see Operating manual - Integrator's guide OmniCore.

1

Calibrate the base coordinate system, relative to the world coordinate system, for
all the robots. For description of how to calibrate the base coordinate system for
a robot, see Operating manual - Integrator's guide OmniCore.

2

If one robot already has a calibrated base coordinate system, the base coordinate
system for another robot can be calibrated by letting the TCPs of the two robots
meet at several points. This method is described in Relative calibration on page30.
This relative calibration is required if all the robots in a MultiMove system shall
perform coordinated movements.

Calibrate the base coordinate systems, relative to the world coordinate system,
for the positioners. For description of how to calibrate the base coordinate system
for a positioner, see Application manual - Additional axes.

3

Calibrate a user coordinate system, relative to the world coordinate system. For
description of how to calibrate a user coordinate system, seeOperatingmanual - In-
tegrator's guide OmniCore.

4

Calibrate an object coordinate system, relative to the user coordinate system. For
description of how to calibrate an object coordinate system, see Operating manu-
al - Integrator's guide OmniCore.

5

Application manual - MultiMove 29
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

4 Calibration
4.1 Calibration overview

4.2 Relative calibration

What is relative calibration
Relative calibration is used to calibrate the base coordinate system of one robot,
using a robot that is already calibrated. This calibration method can only be used
for a MultiMove system where two robots are placed close enough to have some
part of their working areas in common.
If one robot has a base coordinate system that is identical with the world coordinate
system, this robot can be used as a reference for another robot. If no robot has a
base coordinate system that is identical with the world coordinate system, the base
coordinate system for one robot must be calibrated first. For information about
other calibration methods, see Operating manual - Integrator's guide OmniCore.

How to perform relative calibration
The tools for both robots must be correctly calibrated before using relative
calibration, and those tools must be active during calibration.

Info/illustrationAction

Open the app Calibrate and tap on
the robot to calibrate.

1

If present, tap Manual Method (Ad-
vanced).

2

Tap Define Base Frame.3

The 4 Points XZ method is described in Operat-
ing manual - Integrator's guide OmniCore.

Tap Relative n points.4

If you have more than two robots, you
must select which robot to use as
reference.

5

If you only have two robots, this step
is skipped.

Note

It is also possible to load the positions. Tap Po-
sitions and select Load. After loading the con-
troller, restart the controller.

The calibration can be performed with
between 3 and 10 points. Select how
many you want to use in the drop-
down menu.
To get adequate accuracy, at least 5
points is recommended.

6

Select Point 1.7

xx0400000785

Jog the robot you want to calibrate
and the reference robot so that both
TCPs are in the same point.

8

The point is modified and the next point is auto-
matically selected.

Tap Modify.9

The calibration result is shown.Repeat for all the points.10
Make sure that the points are spread
out in both x, y and z coordinates. If,
for example, all point are at the same
height, the z coordinate will be poorly
calibrated.

Continues on next page
30 Application manual - MultiMove

3HAC089689-001 Revision: C
© Copyright 2004-2025 ABB. All rights reserved.

4 Calibration
4.2 Relative calibration

Info/illustrationAction

The calibration cannot be completed until all
points are modified.

Tap Next to accept the calibration.11

Restart the controller.12

Application manual - MultiMove 31
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

4 Calibration
4.2 Relative calibration

Continued

4.3 Calibration chains

Avoid long chains of calibrations
If a robot that is calibrated with relative calibration acts as reference in the next
calibration, the inaccuracies in the calibrations are added for the last robot.

32 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

4 Calibration
4.3 Calibration chains

4.4 Examples of coordinate systems

4.4.1 Example with unsynchronized movements

About this example
In this example, the world coordinate system and the base coordinate system for
robot 1 (A) are identical.
The base coordinate system for robot 2 (B) is defined. Both robots have a user
coordinate system with the origin in a table corner. An object coordinate system
is defined for each robot's work object.

Illustration

xx0300000591

Coordinate systems

DescriptionItem

Robot 1A

Robot 2B

World coordinate system1

Base coordinate system for robot 12

Base coordinate system for robot 23

User coordinate system for both robots4

Object coordinate system for robot 15

Object coordinate system for robot 26

Application manual - MultiMove 33
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

4 Calibration
4.4.1 Example with unsynchronized movements

4.4.2 Example with synchronized movements

About this example
In this example, the world coordinate system and the base coordinate system for
robot 1 (A) are identical.
The base coordinate system for robot 2 (B) is defined. A user coordinate system
is defined to be connected to the rotating axis of the positioner. An object coordinate
system is defined to be fixed to the work object held by the positioner.

Illustration

xx0300000595

Coordinate systems

DescriptionItem

Robot 1A

Robot 2B

World coordinate system1

Base coordinate system for robot 12

Base coordinate system for robot 23

Base coordinate system for positioner4

User coordinate system for both robots5

Object coordinate system for both robots6

34 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

4 Calibration
4.4.2 Example with synchronized movements

5 User interface specific for MultiMove
5.1 FlexPendant for MultiMove configuration

About FlexPendant for MultiMove
Working with the FlexPendant in a MultiMove configuration is similar to when using
a single manipulator. This chapter will explain a few things that are specific for a
MultiMove configuration. For general information about the FlexPendant, see
Operating manual - OmniCore.

What is specific for MultiMove?
Some things that are specific for MultiMove are:

• The status bar shows which robots (and additional axes) are coordinated.
• When opening the Code app, you must select a task.
• The Operate app contains tabs for different tasks.
• The mechanical unit menus can contain several robots.
• You can select which tasks to execute at start. See Select which tasks to

start with START button on page 37.
• There is an additional method for calibrating a robot base frame, relative

calibration. See Relative calibration on page 30.

Application manual - MultiMove 35
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

5 User interface specific for MultiMove
5.1 FlexPendant for MultiMove configuration

5.2 FlexPendant apps

Code
When opening the app Code for a system with more than one task, a list of all the
tasks will be displayed. By tapping the task you want, the program code for that
task is displayed.
For a system with only one task, this list is never shown. The program code is
shown directly.

Operate
In a system with more than one motion task there will be one tab for each motion
task. By tapping a tab, you can see the program code for that task and where the
program pointer and motion pointer are in that task.
If you tap Move PP To Main, the program pointer will be moved to main for all
motion task programs.

QuickSet, Mechanical units menu
In the QuickSet menu, tap the Mechanical unit menu button. All mechanical units
will be shown.
The selected mechanical unit is highlighted with a frame around it.
Any mechanical unit that is coordinated with the selected unit will be indicated with
a flashing frame and the text Coord.

Jogging coordinated or uncoordinated
Jogging a mechanical unit will automatically move all units that are coordinated
with it.

36 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

5 User interface specific for MultiMove
5.2 FlexPendant apps

5.3 Select which tasks to start with START button

Background
The default behavior is that the programs of all NORMAL tasks are started
simultaneously when pressing the START button. However, not all NORMAL task
programs need to run at the same time. It is possible to select which of the NORMAL
task programs will start when pressing the START button.
If All Tasks is selected in the Task Panel Settings, the programs of all STATIC
and SEMISTATIC tasks with TrustLevel set to NoSafety can be selected to be
started with the START button, forward stepped with the FWD button, backward
stepped with the BWD button, and stopped with the STOP button.
If Task Panel Settings is set to Only Normal tasks, all STATIC and SEMISTATIC
tasks are greyed out and cannot be selected in the task panel, Quickset menu (see
Operating manual - OmniCore, section Quickset menu). All STATIC and
SEMISTATIC tasks will be started if the start button is pressed.
If Task Panel Settings is set to All tasks, STATIC and SEMISTATIC tasks with
TrustLevelNoSafety can be selected in the task panel. All selected STATIC and
SEMISTATIC tasks can be stopped, stepped, and started. .
A STATIC or SEMISTATIC task, not selected in the task panel, can still be executing.
This is not possible for a NORMAL task.
Run Mode is always continuous for STATIC and SEMISTATIC tasks. The Run Mode
setting in the Quickset menu is only applicable for NORMAL tasks (see Operating
manual - OmniCore, section Quickset menu).
This will only work in manual mode, no STATIC or SEMISTATIC task can be started,
stepped, or stopped in auto mode.

Task Panel Settings
To start the Task Panel Settings, tap the ABB menu, and then Control Panel,
FlexPendant and Task Panel Settings.

Selecting tasks
Use this procedure to select which of the tasks are to be started with the START
button.

Action

Set the controller to manual mode.1

On the FlexPendant, tap the QuickSet button and then the tasks panel button to show
all tasks.

2

If Task Panel Settings is set toOnly Normal tasks, all STATIC and SEMISTATIC tasks
are greyed out and cannot be selected.
If Task Panel Settings is set to All tasks, STATIC and SEMISTATIC tasks with Trust-
LevelNoSafety can be selected, while STATIC and SEMISTATIC tasks with TrustLevel
set to other values are grayed out and cannot be selected.

Select the check boxes for the tasks whose program should be started by the START
button.

3

Continues on next page
Application manual - MultiMove 37
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

5 User interface specific for MultiMove
5.3 Select which tasks to start with START button

Resetting debug settings in manual mode
Use this procedure to resume normal execution manual mode.

Action

Select Only Normal tasks in the Task Panel Settings.1

Press START button.2
All STATIC and SEMISTATIC will run continuously and not be stopped by the STOP
button or emergency stop.

Switching to auto mode
When switching to auto mode, all STATIC and SEMISTATIC tasks will be deselected
from the tasks panel. The stopped STATIC and SEMISTATIC tasks will start next
time any of the START, FWD or BWD button are pressed. These tasks will then
run continuously forward and not be stopped by the STOP button or emergency
stop.
What happens with NORMAL tasks that has been deselected in the tasks panel
depends on the system parameter Reset in type Auto Condition Reset in topic
Controller. If Reset is set to Yes, all NORMAL tasks will be selected in the tasks
panel and be started with the START button. If Reset is set to No, only those
NORMAL tasks selected in tasks panel will be started by the START button.

Note

Note that changing the value of the system parameter Reset will affect all the
debug resettings (for example speed override and simulated I/O). For more
information, see Technical reference manual - System parameters, section Auto
Condition Reset.

Restarting the controller
If the controller is restarted, all NORMAL tasks will keep their status while all
STATIC and SEMISTATIC tasks will be deselected from the tasks panel. As the
controller starts up all STATIC and SEMISTATIC tasks will be started and then run
continuously.

Deselect task in synchronized mode
If a task is in a synchronized mode, that is program pointer between SyncMoveOn

and SyncMoveOff, the task can be deselected but not reselected. The task cannot
be selected until the synchronization is terminated. If the execution continues, the
synchronization will eventually be terminated for the other tasks, but not for the
deselected task. The synchronization can be terminated for this task by moving
the program pointer to main or to a routine.
If the system parameter Reset is set to Yes, any attempt to change to Auto mode
will fail while a deselected task is in synchronized mode. Changing to Auto mode
should make all NORMAL tasks selected, and when this is not possible it is not
possible to change to Auto mode.

38 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

5 User interface specific for MultiMove
5.3 Select which tasks to start with START button
Continued

6 Programming
6.1 RAPID components

Data types
This is a brief description of each data type in MultiMove. For more information,
see the respective data type in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionData type

A variable of the data type syncident is used to identify which
WaitSyncTask, SyncMoveOn or SyncMoveOff instructions, in the differ-
ent task programs, should be synchronized with each other.

syncident

The name of the syncident variable must be the same in all task pro-
grams.
Declare syncident variables globally in each task. Do not reuse a
syncident variable (each WaitSyncTask, SyncMoveOn and
SyncMoveOff in a task program should have a unique syncident).

A persistent variable of the data type tasks contains names of the tasks
that will be synchronized with WaitSyncTask or SyncMoveOn.

tasks

The tasks variable must be declared as system global (persistent)
variable, with the same name and the same content in all task programs.

A numeric value or a variable of type identno is used in the argument
ID of any move instructions executed between the SyncMoveOn and
SyncMoveOff instructions.

identno

System data
System data is predefined, internal data of the robot. A system data can be read,
but not changed, from a RAPID program. For more information, see Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionSystem data

Reference to the robot (if any) controlled by the task.ROB_ID
If used from a task that does not control a robot, an error will occur. Al-
ways use TaskRunRob() to check this before using ROB_ID.

Instructions
This is a brief description of each instruction in MultiMove. For more information,
see the respective instruction in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionInstruction

WaitSyncTask is used to synchronize several task programs at a special
point in the program.

WaitSyncTask

A WaitSyncTask instruction will wait for the other task programs. When
all task programs have reached the WaitSyncTask instruction, they
will continue their execution.

Continues on next page
Application manual - MultiMove 39
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.1 RAPID components

DescriptionInstruction

SyncMoveOn is used to start synchronized movement mode.SyncMoveOn
A SyncMoveOn instruction will wait for the other task programs. When
all task programs have reached the SyncMoveOn, they will continue
their execution in synchronized movement mode. The move instructions
in the different task programs are executed simultaneously, until the
instruction SyncMoveOff is executed.
A stop point must be programmed before the SyncMoveOn instruction.

SyncMoveOff is used to end synchronized movement mode.SyncMoveOff
A SyncMoveOff instruction will wait for the other task programs. When
all task programs have reached the SyncMoveOff, they will continue
their execution in unsynchronized mode.
A stop point must be programmed before the SyncMoveOff instruction.

SyncMoveUndo is used to turn off synchronized movements, even if not
all the other task programs execute the SyncMoveUndo instruction.

SyncMoveUndo

SyncMoveUndo is intended for UNDO handlers. When the program
pointer is moved from the procedure, SyncMoveUndo is used to turn off
the synchronization.

MoveExtJ (Move External Joints) moves one or several mechanical
units without TCP.

MoveExtJ

MoveExtJ is used to move additional axes, in a task without any robot.

Functions
This is a brief description of each function in MultiMove. For more information, see
the respective function in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionFunction

IsSyncMoveOn is used to tell if the mechanical unit group is in synchron-
ized movement mode.

IsSyncMoveOn

A task that does not control any mechanical unit can find out if the
mechanical units defined in the parameter Use Mechanical Unit Group
are in synchronized movement mode.

RobName is used to get the name of the robot controlled by the task. It
returns the mechanical unit name as a string. If called from a task that
does not control a robot, an empty string is returned.

RobName

Continues on next page
40 Application manual - MultiMove

3HAC089689-001 Revision: C
© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.1 RAPID components
Continued

Synchronizing argument
This is a brief description of the arguments used by move instructions to facilitate
the synchronization between tasks. For more information, see any move instruction
in Technical reference manual - RAPID Instructions, Functions and Data types.

DescriptionArgument

All move instructions executed between the SyncMoveOn and SyncMoveOff
instructions must have the argument ID specified. The ID argument must
be the same for all the move instructions (in each task program) that should
execute simultaneously.

ID

The ID argument can be a numeric value or a syncident variable.
The purpose of ID is to support the operator by making it easier to see which
move instructions that are synchronized with each other. Make sure an ID
value is not used for more than one move instruction, between the same
SyncMoveOn and SyncMoveOff instructions. It is also helpful for the oper-
ator if the ID values are ascending for consecutive move instructions (e.g.
10, 20, 30, ...).
Move instructions that are not between the SyncMoveOn and SyncMoveOff
instructions must not have the argument ID.

Application manual - MultiMove 41
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.1 RAPID components

Continued

6.2 Tasks and programming techniques

Different tasks
Each task program can handle the movements for one robot and up to 6 additional
axes. Several tasks can be used, each containing a program quite similar to the
program of the main task in a single robot application. For more information about
the tasks, see the section about Multitasking in Application manual - Controller
software OmniCore.

One task program per robot
Each task program can only handle one TCP. This means that you must have one
task for each robot.

Additional axes in separate tasks
Additional axes that move a work object can be handled by the same task program
as one of the robots. However, if the additional axes should be able to move
independent of the robots, it is best to let a separate task program handle the
additional axes.

42 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.2 Tasks and programming techniques

6.3 Coordinated work objects

About work objects
This section will only describe how to make a work object coordinated with a
mechanical unit. For a detailed description of work objects, see wobjdata - Work
object data in Technical reference manual - RAPID Instructions, Functions and
Data types.

What determines coordination?
When declaring a work object, the second attribute (ufprog) and the third attribute
(ufmec) determine if the work object is coordinated to any mechanical unit.

robhold
robhold defines if the work object is held by the robot in this task.
robhold is normally set to FALSE. The task of the robot that holds the work object
(where robhold would be set to TRUE) does not have to declare it unless a
stationary tool is used.

ufprog
If the work object is stationary, ufprog is set to TRUE.
If the work object can be moved by any mechanical unit, ufprog is set to FALSE.

ufmec
ufmec is set to the name of the mechanical unit that moves the work object.
If ufprog is set to TRUE, ufmec can be left as an empty string (no mechanical unit
can move the work object).

Example 1
This is an example of a work object that can be moved by a mechanical unit with
the name STN_1:

PERS wobjdata wobj_stn1 := [FALSE, FALSE, "STN_1",
[[0,0,0],[1,0,0,0]], [[0,0,250],[1,0,0,0]]];

Example 2
Robot ROB_1 is welding a part that is hold by robot ROB_2. The workobject is moved
by robot ROB_2.
When declaring the work object in ROB_1, the robhold argument must be set to
FALSE, since robhold TRUE is only used for stationary tools. For ROB_2, any work
object can be active since it is only the joint angles of ROB_2 that coordinates the
work object for ROB_1.

PERS wobjdata wobj_rob1 := [FALSE, FALSE, "ROB_2",
[[0,0,0],[1,0,0,0]], [[0,0,250],[1,0,0,0]]];

Application manual - MultiMove 43
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.3 Coordinated work objects

6.4 Independent movements

6.4.1 About independent movements

What is independent movements
If the motion tasks to control the manipulators are to work independently, no
synchronization or coordination is needed. Each motion task is then written as for
a single manipulator.

Other dependencies than movements
Sometimes, even if the movements do not need to be coordinated, the task
programs can have dependencies. For example, if one robot leaves an object that
a second robot will pick up, the first robot must finish with the object before the
second robot can grab it.
These interactions can be solved with:

• the instruction WaitSyncTask

• I/O signals
• persistent variables together with WaitUntil

See the section about Multitasking in Application manual - Controller software
OmniCore.

44 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.4.1 About independent movements

6.4.2 Example with independent movements

Program description
In this example, one robot welds a circle on one object while the other robot welds
a square on another object.

Note

To make the example simple and general, ordinary move instructions (e.g. MoveL)
are used instead of weld instructions (e.g. ArcL). For more information about
arc welding, see Application manual - ArcWare for OmniCore.

Illustration

xx0300000603

Robot 1A

Robot 2B

T_ROB1 task program
MODULE module1

TASK PERS wobjdata wobj1 :=

[FALSE, TRUE, "",

[[500, -200, 1000], [1, 0, 0 ,0]],

[[100, 200, 100], [1, 0, 0, 0]]];

TASK PERS tooldata tool1 := ...

CONST robtarget p11 := ...

...

Continues on next page
Application manual - MultiMove 45
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.4.2 Example with independent movements

CONST robtarget p14 := ...

PROC main()

...

IndependentMove;

...

ENDPROC

PROC IndependentMove()

MoveL p11, v500, fine, tool1\WObj:=wobj1;

MoveC p12, p13, v500, z10, tool1\WObj:=wobj1;

MoveC p14, p11, v500, fine, tool1\WObj:=wobj1;

ENDPROC

ENDMODULE

T_ROB2 task program
MODULE module2

TASK PERS wobjdata wobj2 :=

[FALSE, TRUE, "",

[[500, -200, 1000], [1, 0, 0 ,0]],

[[100, 1200, 100], [1, 0, 0, 0]]];

TASK PERS tooldata tool2 := ...

CONST robtarget p21 := ...

...

CONST robtarget p24 := ...

PROC main()

...

IndependentMove;

...

ENDPROC

PROC IndependentMove()

MoveL p21, v500, fine, tool2\WObj:=wobj2;

MoveL p22, v500, z10, tool2\WObj:=wobj2;

MoveL p23, v500, z10, tool2\WObj:=wobj2;

MoveL p24, v500, z10, tool2\WObj:=wobj2;

MoveL p21, v500, fine, tool2\WObj:=wobj2;

ENDPROC

ENDMODULE

46 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.4.2 Example with independent movements
Continued

6.5 Semi coordinated movements

6.5.1 About semi coordinated movements

What is semi coordinated movements
Several robots can work with the same work object, without synchronized
movements, as long as the work object is not moving.
A positioner can move the work object when the robots are not coordinated to it,
and the robots can be coordinated to the work object when it is not moving.
Switching between moving the object and coordinating the robots is called semi
coordinated movements.

Implementation
Semi coordinated movements require some synchronization between the task
programs (e.g. a WaitSyncTask instruction). The positioner must know when the
work object can be moved, and the robots must know when they can work on the
work object. However, it is not required that every move instruction is synchronized.

Advantages
The advantage is that each robot can work independently with the work object. If
the different robots perform very different assignments, this may save cycle time
compared to letting all the robot movements be synchronized.

Application manual - MultiMove 47
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.5.1 About semi coordinated movements

6.5.2 Example with semi coordinated movements

Program description
In this example, we want to accomplish the welding of a small square and a long
line on one side of the object. On another side of the object we want to make a
square and a circle.
The positioner will first position the work object with the first side up, while the
robots wait. Robot 1 will then weld a line at the same time as robot 2 welds a square.
When the robots are done with the first welding operations, they wait while the
positioner turns the work object so the second side is upwards. Robot 1 will then
weld a circle at the same time as robot 2 welds a square.

WARNING

If the movement of the work object and the robot is not separated with
WaitSyncTask and stop points the following can occur:

• the mechanical units controlled by the different tasks can collide
• the robot is stepping backwards in the wrong direction
• the movement or restart instruction can be blocked.

Note

To make the example simple and general, ordinary move instructions (e.g. MoveL)
are used instead of weld instructions (e.g. ArcL). For more information about
arc welding, see Application manual - ArcWare for OmniCore.

Continues on next page
48 Application manual - MultiMove

3HAC089689-001 Revision: C
© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.5.2 Example with semi coordinated movements

Illustration

xx0300000596

Robot 1A

Robot 2B

T_ROB1 task program
MODULE module1

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

VAR syncident sync4;

PERS tasks all_tasks{3} := [["T_ROB1"],["T_ROB2"],["T_STN1"]];

PERS wobjdata wobj_stn1 := [FALSE, FALSE, "STN_1", [[0, 0, 0],
[1, 0, 0 ,0]], [[0, 0, 250], [1, 0, 0, 0]]];

TASK PERS tooldata tool1 := ...

Continues on next page
Application manual - MultiMove 49
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.5.2 Example with semi coordinated movements

Continued

CONST robtarget p11 := ...

...

CONST robtarget p17 := ...

PROC main()

...

SemiSyncMove;

...

ENDPROC

PROC SemiSyncMove()

! Wait for the positioner

WaitSyncTask sync1, all_tasks;

MoveL p11, v1000, fine, tool1 \WObj:=wobj_stn1;

MoveL p12, v300, fine, tool1 \WObj:=wobj_stn1;

! Move away from the object

MoveL p13, v1000, fine, tool1;

! Sync to let positioner move

WaitSyncTask sync2, all_tasks;

! Wait for the positioner

WaitSyncTask sync3, all_tasks;

MoveL p14, v1000, fine, tool1 \WObj:=wobj_stn1;

MoveC p15, p16, v300, z10, tool1 \WObj:=wobj_stn1;

MoveC p17, p14, v300, fine, tool1 \WObj:=wobj_stn1;

WaitSyncTask sync4, all_tasks;

MoveL p13, v1000, fine, tool1;

ENDPROC

ENDMODULE

T_ROB2 task program
MODULE module2

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

VAR syncident sync4;

PERS tasks all_tasks{3} := [["T_ROB1"],["T_ROB2"],["T_STN1"]];

PERS wobjdata wobj_stn1 := [FALSE, FALSE, "STN_1", [[0, 0, 0],
[1, 0, 0 ,0]], [[0, 0, 250], [1, 0, 0, 0]]];

TASK PERS tooldata tool2 := ...

CONST robtarget p21 := ...

...

CONST robtarget p29 := ...

PROC main()

...

SemiSyncMove;

...

ENDPROC

PROC SemiSyncMove()

! Wait for the positioner

Continues on next page
50 Application manual - MultiMove

3HAC089689-001 Revision: C
© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.5.2 Example with semi coordinated movements
Continued

WaitSyncTask sync1, all_tasks;

MoveL p21, v1000, fine, tool2 \WObj:=wobj_stn1;

MoveL p22, v300, z10, tool2 \WObj:=wobj_stn1;

MoveL p23, v300, z10, tool2 \WObj:=wobj_stn1;

MoveL p24, v300, z10, tool2 \WObj:=wobj_stn1;

MoveL p21, v300, fine, tool2 \WObj:=wobj_stn1;

! Move away from the object

MoveL p25, v1000, fine, tool2;

! Sync to let positioner move

WaitSyncTask sync2, all_tasks;

! Wait for the positioner

WaitSyncTask sync3, all_tasks;

MoveL p26, v1000, fine, tool2 \WObj:=wobj_stn1;

MoveL p27, v300, z10, tool2 \WObj:=wobj_stn1;

MoveL p28, v300, z10, tool2 \WObj:=wobj_stn1;

MoveL p29, v300, z10, tool2 \WObj:=wobj_stn1;

MoveL p26, v300, fine, tool2 \WObj:=wobj_stn1;

WaitSyncTask sync4, all_tasks;

MoveL p25, v1000, fine, tool2;

ENDPROC

ENDMODULE

T_STN1 task program
MODULE module3

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

VAR syncident sync4;

PERS tasks all_tasks{3} := [["T_ROB1"],["T_ROB2"],["T_STN1"]];

CONST jointtarget angle_0 := [[9E9, 9E9, 9E9, 9E9, 9E9, 9E9],
[0, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST jointtarget angle_neg90 := [[9E9, 9E9, 9E9, 9E9, 9E9,
9E9], [-90, 9E9, 9E9, 9E9, 9E9, 9E9]];

PROC main()

...

SemiSyncMove;

...

ENDPROC

PROC SemiSyncMove()

! Move to the wanted frame position. A movement of the

! positioner is always required before the first semi-

! coordinated movement.

MoveExtJ angle_0, vrot50, fine;

! Sync to let the robots move

WaitSyncTask sync1, all_tasks;

! Wait for the robots

WaitSyncTask sync2, all_tasks;

MoveExtJ angle_neg90, vrot50, fine;

WaitSyncTask sync3, all_tasks;

Continues on next page
Application manual - MultiMove 51
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.5.2 Example with semi coordinated movements

Continued

WaitSyncTask sync4, all_tasks;

ENDPROC

ENDMODULE

52 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.5.2 Example with semi coordinated movements
Continued

6.5.3 Considerations and limitations when using semi coordinated movements

Stand still in known position
The unit that controls the frame must stand still in a known position. To get a known
position, order a movement to a finepoint.

Activate task
The unit that controls the frame must be activated in the task selection panel on
the FlexPendant (see Selecting tasks on page 37).

Finepoints and WaitSyncTask before and after semi coordinated movement
The semi coordinated movement shall be separated with finepoints and
WaitSyncTask instructions before and after the movement.

Dealing with a lost path
When any of the instructions listed below is used, it is not possible to continue
program execution right away.

• ActUnit

• DeactUnit

• ClearPath

• SyncMoveOn

• SyncMoveoff

• SyncMoveSuspend

• SyncMoveResume

After any of these instructions, order a movement to a wanted position for the unit
that controls the frame and insert a WaitSyncTask instruction before the
semicoordinated movement.
Before changing to synchronized movement withSyncMoveOn orSyncMoveResume,
the semi coordinated movement must be ended with a finepoint and a
WaitSyncTask.

Example with semi coordinated and coordinated movement
!Example with semicoordinated and synchronized movement

!Program example in task T_ROB1

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

PERS wobjdata rob2_obj:= [FALSE,FALSE,"ROB_2",
[[0,0,0],[1,0,0,0]],[[155.241,-51.5938,57.6297],
[0.493981,0.506191,-0.501597,0.49815]]];

VAR syncident sync0;

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

VAR syncident sync4;

PROC main()

...

WaitSyncTask sync0, task_list;

Continues on next page
Application manual - MultiMove 53
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.5.3 Considerations and limitations when using semi coordinated movements

MoveL p1_90, v100, fine, tcp1 \WObj:= rob2_obj;

WaitSyncTask sync1, task_list;

SyncMoveOn sync2, task_list;

MoveL p1_100 \ID:=10, v100, fine, tcp1 \WObj:= rob2_obj;

SyncMoveOff sync3;

!Wait until the movement has been finished in T_ROB2

WaitSyncTask sync3, task_list;

!Now a semicoordinated movement can be performed

MoveL p1_120, v100, z10, tcp1 \WObj:= rob2_obj;

MoveL p1_130, v100, fine, tcp1 \WObj:= rob2_obj;

WaitSyncTask sync4, task_list;

...

ENDPROC

!Program example in task T_ROB2

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync0;

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

VAR syncident sync4;

PROC main()

...

MoveL p_fine, v1000, fine, tcp2;

WaitSyncTask sync0, task_list;

!Wait until the movement in T_ROB1 task is finished

WaitSyncTask sync1, task_list;

SyncMoveOn sync2, task_list;

MoveL p2_100 \ID:=10, v100, fine, tcp2;

SyncMoveOff sync3;

!The path has been removed at SyncMoveOff

!Perform a movement to wanted position for the object to

!make the position available for other tasks

MoveL p2_100, v100, fine, tcp2;

WaitSyncTask sync3, task_list;

WaitSyncTask sync4, task_list;

MoveL p2_110, v100, z10, tcp2;

...

ENDPROC

When switching between semicoordinated to synchronized movement, a
WaitSyncTask is needed (when using identity sync1).
When switching between synchronized to semicoordinated movement, the task
that move the work object (rob2_obj) needs to move to the desired position. After
that a WaitSyncTask is needed (identity sync3) before the semicoordinated
movement can be performed.

54 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.5.3 Considerations and limitations when using semi coordinated movements
Continued

6.6 Coordinated synchronized movements

6.6.1 About coordinated synchronized movements

What is coordinated synchronized movements
Several robots can work with the same moving work object.
The positioner or robot that holds the work object and the robots that work with
the work object must have synchronized movements. This means that the RAPID
task programs, that handle one mechanical unit each, execute their move
instructions simultaneously.

Implementation
The synchronized movement mode is started by executing a SyncMoveOn

instruction in each task program. The synchronized movement mode is ended by
executing a SyncMoveOff instruction in each task program. The number of
executed move instruction between SyncMoveOn and SyncMoveOff has to be the
same for all task programs.

Advantages
Coordinated synchronized movements usually save cycle time since the robots
do not have to wait while the work object is being moved. It also allows robots to
cooperate in ways that would otherwise be difficult or impossible to achieve.

Limitations
Coordinated synchronized movements can only be used if you have the RobotWare
option MultiMove Coordinated.

Application manual - MultiMove 55
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.6.1 About coordinated synchronized movements

6.6.2 Example with coordinated synchronized movements

Program description
In this example, we want both robots to weld all the way around the object.
The robot TCPs are programmed to make circular paths relative to the work object.
However, since the work object is rotating, the robots will almost stand still while
the work object is turning.

Note

To make the example simple and general, ordinary move instructions (e.g. MoveL)
are used instead of weld instructions (e.g. ArcL). For more information about
arc welding, see Application manual - ArcWare for OmniCore.

Illustration

xx0300000597

Robot 1A

Robot 2B

T_ROB1 task program
MODULE module1

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3} := [["T_ROB1"],["T_ROB2"],["T_STN1"]];

PERS wobjdata wobj_stn1 := [FALSE, FALSE, "STN_1", [[0, 0, 0],
[1, 0, 0 ,0]], [[0, 0, 250], [1, 0, 0, 0]]];

TASK PERS tooldata tool1 := ...

Continues on next page
56 Application manual - MultiMove

3HAC089689-001 Revision: C
© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.6.2 Example with coordinated synchronized movements

CONST robtarget p100 := ...

...

CONST robtarget p199 := ...

PROC main()

...

SyncMove;

...

ENDPROC

PROC SyncMove()

MoveJ p100, v1000, z50, tool1;

WaitSyncTask sync1, all_tasks;

MoveL p101, v500, fine, tool1 \WObj:=wobj_stn1;

SyncMoveOn sync2, all_tasks;

MoveL p102\ID:=10, v300, z10, tool1 \WObj:=wobj_stn1;

MoveC p103, p104\ID:=20, v300, z10, tool1 \WObj:=wobj_stn1;

MoveL p105\ID:=30, v300, z10, tool1 \WObj:=wobj_stn1;

MoveC p106, p101\ID:=40, v300, fine, tool1 \WObj:=wobj_stn1;

SyncMoveOff sync3;

MoveL p199, v1000, fine, tool1;

UNDO

SyncMoveUndo;

ENDPROC

ENDMODULE

T_ROB2 task program
MODULE module2

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3} := [["T_ROB1"],["T_ROB2"],["T_STN1"]];

PERS wobjdata wobj_stn1 := [FALSE, FALSE, "STN_1", [[0, 0, 0],
[1, 0, 0 ,0]], [[0, 0, 250], [1, 0, 0, 0]]];

TASK PERS tooldata tool2 := ...

CONST robtarget p200 := ...

...

CONST robtarget p299 := ...

PROC main()

...

SyncMove;

...

ENDPROC

PROC SyncMove()

MoveJ p200, v1000, z50, tool2;

WaitSyncTask sync1, all_tasks;

MoveL p201, v500, fine, tool2 \WObj:=wobj_stn1;

SyncMoveOn sync2, all_tasks;

MoveL p202\ID:=10, v300, z10, tool2 \WObj:=wobj_stn1;

Continues on next page
Application manual - MultiMove 57
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.6.2 Example with coordinated synchronized movements

Continued

MoveC p203, p204\ID:=20, v300, z10, tool2 \WObj:=wobj_stn1;

MoveL p205\ID:=30, v300, z10, tool2 \WObj:=wobj_stn1;

MoveC p206, p201\ID:=40, v300, fine, tool2 \WObj:=wobj_stn1;

SyncMoveOff sync3;

MoveL p299, v1000, fine, tool2;

UNDO

SyncMoveUndo;

ENDPROC

ENDMODULE

T_STN1 task program
MODULE module3

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3} := [["T_ROB1"],["T_ROB2"],["T_STN1"]];

CONST jointtarget angle_neg20 := [[9E9, 9E9, 9E9, 9E9, 9E9,
9E9], [-20, 9E9, 9E9, 9E9, 9E9, 9E9]];

...

CONST jointtarget angle_340 := [[9E9, 9E9, 9E9, 9E9, 9E9, 9E9],
[340, 9E9, 9E9, 9E9, 9E9, 9E9]];

PROC main()

...

SyncMove;

...

ENDPROC

PROC SyncMove()

MoveExtJ angle_neg20, vrot50, fine;

WaitSyncTask sync1, all_tasks;

! Wait for the robots

SyncMoveOn sync2, all_tasks;

MoveExtJ angle_20\ID:=10, vrot100, z10;

MoveExtJ angle_160\ID:=20, vrot100, z10;

MoveExtJ angle_200\ID:=30, vrot100, z10;

MoveExtJ angle_340\ID:=40, vrot100, fine;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

ENDMODULE

58 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.6.2 Example with coordinated synchronized movements
Continued

6.7 Program execution

6.7.1 Corner zones

Corner zones and WaitSyncTask
Corner zones can be used when synchronizing several task programs with
WaitSyncTask.

Corner zones and synchronized movements
Finepoints must be used both before starting the synchronized movements with
SyncMoveOn and before ending it with SyncMoveOff. All other move instructions
between SyncMoveOn and SyncMoveOff can, on the other hand, use corner zones.

Dependences between synchronized instructions
In synchronized movements mode, all or none of the simultaneous move
instructions must be programmed with corner zones. This means that the move
instructions with the same ID must either all have corner zones, or all have
finepoints. If a move instruction with a corner zone and a move instruction with a
finepoint are synchronously executed in their respective task program, an error
will occur.
Synchronously executed move instructions can have corner zones of different
sizes (e.g. one use z10 and one use z50).
See Motion principles on page 63.

Corner zones converted to finepoints
A corner zone will become a finepoint if the task program has to wait for another
task program. This can happen if WaitSyncTask is executed in a corner zone, but
one task program reaches this instruction later than the others.

Example with corner zones
Given the RAPID code below, the following will happen:

• If robot1 reaches p11 at approximately the same time as robot2 reaches p21,
both robots will be synchronized in corner zones (p11 and p21).

• If robot1 reaches p11 before robot2 reaches p21, p11 will become a finepoint.
• If robot2 reaches p21 before robot1 reaches p11, p21 will become a finepoint.

Note that both move instructions with corner zones and move instructions with
finepoints can be used in each task. You just have to make sure that the instructions
with the same ID in both task programs are of the same type. The instructions
before SyncMoveOn and SyncMoveOff must have stop points.

Part of T_ROB1 task program:
MoveL p11, v500, z50, tool1;

WaitSyncTask sync1, all_tasks;

MoveL p12, v500, fine, tool1;

SyncMoveOn sync2, all_tasks;

MoveL p13\ID:=10, v500, z50, tool1 \WObj:=wobj_stn1;

Continues on next page
Application manual - MultiMove 59
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.7.1 Corner zones

MoveL p14\ID:=20, v500, fine, tool1 \WObj:=wobj_stn1;

SyncMoveOff sync3;

MoveL p15, v500, fine, tool1;

Part of T_ROB2 task program:
MoveL p21, v500, z50, tool2;

WaitSyncTask sync1, all_tasks;

MoveL p22, v500, fine, tool2;

SyncMoveOn sync2, all_tasks;

MoveL p23\ID:=10, v500, z10, tool2 \WObj:=wobj_stn1;

MoveL p24\ID:=20, v500, fine, tool2 \WObj:=wobj_stn1;

SyncMoveOff sync3;

MoveL p25, v500, fine, tool2;

60 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.7.1 Corner zones
Continued

6.7.2 Synchronization behavior

Synchronization point
When one task program reaches a synchronization point, it will wait until all task
programs have reached the same synchronization point.
Synchronization points are:

• all WaitSyncTask instructions
• all SyncMoveOn instructions
• all SyncMoveOff instructions
• all move instructions between SyncMoveOn and SyncMoveOff

When one task program reaches a WaitSyncTask, SyncMoveOn or SyncMoveOff
instruction, it will wait until all task programs have reached the instruction with the
same syncident variable.
All move instructions between SyncMoveOn and SyncMoveOff must use the
argument ID. When a task program reaches such a move instruction, it will wait
until all task programs have reached the move instruction with the ID argument
set to the same value.

Other instructions than movements
All synchronized task programs must execute the same number of move instructions
between the SyncMoveOn and SyncMoveOff instructions. This does not affect
functions or other instructions than move instructions. It is possible to have any
number of functions and instructions that are not move instructions.

Example
In this example both task programs execute two move instructions, but one of the
tasks executes other instructions and functions.
Robot 2 will wait and not move to p21 until robot 1 starts to move towards p11.
Since SyncMoveOff is a synchronization point, both tasks will wait for di1 to
become 1 before executing SyncMoveOff.

Part of T_ROB2 task program:
SyncMoveOn sync1, all_tasks;

time := CTime();

Write log, "Synchronization started "\NoNewLine;

Write log, time;

MoveL p11\ID:=10, v500, fine, tool1 \WObj:=wobj_stn1;

Set do1;

MoveC p12, p13\ID:=20, v500, fine, tool1 \WObj:=wobj_stn1;

WaitDI di1, 1;

SyncMoveOff sync2;

Part of T_ROB2 task program:
SyncMoveOn sync1, all_tasks;

MoveJ p21\ID:=10, v500, fine, tool2 \WObj:=wobj_stn1;

MoveL p22\ID:=20, v500, fine, tool2 \WObj:=wobj_stn1;

SyncMoveOff sync2;

Application manual - MultiMove 61
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.7.2 Synchronization behavior

6.7.3 Dummy instructions

About dummy instructions
The same number of move instructions must be executed between SyncMoveOn

and SyncMoveOff in all task programs. If a move instruction is only executed
under certain circumstances, the number of move instructions may differ from the
other task programs. This can be solved by adding a move instruction to the point
where the robot already is (a dummy instruction) for the case where the original
move instruction is not executed.

Example with dummy move instructions
In this example, the task program needs to execute two move instructions if di1 is
set to 1. If di1 is 0, two move instructions are executed that move the robot to the
position where it already is (dummy instructions).

Part of a task program
SyncMoveOn sync1, all_tasks;

MoveL p1\ID:=10, v500, fine, tool1 \WObj:=wobj_stn1;

IF di1=1 THEN

! Instructions executed under certain conditions

MoveL p2\ID:=20, v500, fine, tool1 \WObj:=wobj_stn1;

MoveL p1\ID:=30, v500, fine, tool1 \WObj:=wobj_stn1;

ELSE

! Add dummy move instructions

MoveL p1\ID:=20, v500, fine, tool1 \WObj:=wobj_stn1;

MoveL p1\ID:=30, v500, fine, tool1 \WObj:=wobj_stn1;

ENDIF

SyncMoveOff sync2;

62 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.7.3 Dummy instructions

6.7.4 Motion principles

Robot speeds
When the movements of several robots are synchronized, all robots adjust their
speed to finish their movements simultaneously. This means that the robot
movement that takes the longest time will determine the speed of the other robots.

Example of robot speeds
In this example, the distance between p11 and p12 is 1000 mm and the distance
between p21 and p22 is 500 mm. When running the code below, robot1 will move
1000 mm at a speed of 100 mm/s. Since this will take 10 seconds, robot2 will move
500 mm in 10 seconds. The speed of robot2 will be 50 mm/s (and not 500 mm/s
as programmed).
Part of T_ROB1 task program:

MoveJ p11, v1000, fine, tool1;

SyncMoveOn sync1, all_tasks;

MoveL p12\ID:=10, v100, fine, tool1;

Part of T_ROB2 task program:
MoveJ p21, v1000, fine, tool2;

SyncMoveOn sync1, all_tasks;

MoveL p22\ID:=10, v500, fine, tool2;

xx0400000907

Application manual - MultiMove 63
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.7.4 Motion principles

6.7.5 Modify position

About modifying positions
A programmed position can be modified from the FlexPendant apps Operate,
Program Data, Code.

Modify position in unsynchronized mode
When the movements of the different tasks are unsynchronized, the position of
each mechanical unit is modified individually.

Modify position in synchronized movement mode
Modifying positions while in synchronized movement mode (when the execution
is between a SyncMoveOn and SyncMoveOff instruction) behaves differently
depending on if it is done from the Production Window or the Program Editor.
In the Production Window, the position will be modified for all tasks in synchronized
movement mode. Circle points cannot be modified from the Production Window
while in synchronized movement mode, thus if the marked point is a circle point,
the function to modify position from the Production Window will not be enabled.
In the Production Window, the position can only be modified for the current move
instruction (where the motion pointer is).
In the Program Editor, the position will be modified only for the task program
currently open in that editor window.
See also example on circular movement in the description of modifying positions
in Operating manual - OmniCore.

Modify circular position in synchronized movement mode

T1

T2

CirPoint

CirPoint

T3

xx1400001119

64 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.7.5 Modify position

6.7.6 Moving a program pointer

Moving PP in unsynchronized mode
When none of the tasks are in synchronized movement mode, a program pointer
in one task can be moved without affecting the other tasks.

Moving PP in synchronized movement mode
If the program pointer is moved for one task, the program pointers for all tasks in
synchronized movement mode are lost. This is the case even if the task where the
program pointer is moved is not in synchronized movement mode. Even if a task
is inactive, moving its program pointer will affect the program pointers of all tasks
in synchronized movement mode.

Example
In this example, there are three tasks. Task2 and Task3 are in synchronized
movement mode, while Task1 works independently. In this situation, the user taps
Move PP to Main for Task1.
The program pointers for Task2 and Task3 will be lost.

xx0500001444

Application manual - MultiMove 65
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.7.6 Moving a program pointer

6.7.7 Tool orientation at circular movements

Coordinated circular move instructions
There is a risk for incorrect tool orientation if two coordinated task programs both
perform synchronized circular move instructions. If one robot holds a work object
that another robot is working on, the circle interpolation affects both robots. The
circle point should be reached at the same time for both circle paths to avoid
incorrect orientation of the tool.

Example

xx0400000717

If p12 would be in the beginning of its circular path (closer to p11 than p13) and
p22 would be in the end of its circular path (closer to p23 than p21) then the tool
orientation could become wrong. If p12 and p22 are in the same relative position
on the path (percentage of the path length) the tool orientation will remain correct.

Tip

By modifying the position for both robots circle point at the same time, you make
sure the tool orientation stays correct. This means that, in the example, you
should step through the program and then modify p12 and p22 at the same time.

66 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.7.7 Tool orientation at circular movements

6.7.8 Applications affected by MultiMove

Collision detection for MultiMove robots
The default behavior when a collision is detected for one robot in a MultiMove
configuration is that all robots are stopped.
One reason for this behavior is that when a collision is detected, there is a big risk
that it was two robots that collided. Another reason is that if one robot stops and
another continues, this might cause another collision.
This behavior can be changed with the system parameter Ind collision stop without
brake. If this parameter is set to TRUE and the robots are running in independent
RAPID tasks when a collision is detected, only the robot that detected the collision
will be stopped.

World Zones
A world zone declared in one task program is only valid for the mechanical units
that belong to that task. For a world zone to affect all mechanical units, it must be
declared in all task programs.

Application manual - MultiMove 67
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.7.8 Applications affected by MultiMove

6.8 Programming recommendations

Declare syncident globally in task
By declaring all variables of the data type syncident globally in the task program,
there is no risk of having two syncident with the same name in the same task
program.

Do not reuse syncident
A syncident variable is used as an argument for all WaitSyncTask, SyncMoveOn
and SyncMoveOff instructions, so that the operator can distinguish which
instructions are executed simultaneously in the different task programs. If one
syncident variable would be used as argument for more than one instruction per
task, that instruction would no longer be uniquely identified. To make sure your
program code is understandable, never reuse a syncident variable.

Declaring tools, work objects and payloads
Declaring a variable as TASK PERS will make it persistent in the task program, but
not shared between tasks. By declaring tools, work objects and payloads as task
persistent, you do not have to keep track of whether the variable name is used in
other tasks. If tools, work objects and payloads are declared as TASK PERS, the
names do not have to be changed if the program is copied or mirrored to another
task.
A work object that is used by several task programs is preferably declared as PERS.
A tool can be declared as PERS if a background task needs to read the robot
position.

Changing a PERS
A globally declared PERS will keep its value even if a new declaration of the same
PERS is loaded. The value of the PERS that was first loaded will be preserved as
long as there is any reference to that PERS.
If you want to replace all the task programs with new programs where the values
of the PERS is different, remove all task programs first and then load all the new
task programs. That way the old value of the PERSwill be lost when all declarations
of it are removed.
Changing the value of a PERS from the Data Variable view on the FlexPendant and
saving the program, will update the PERS in a correct way.

Use SyncMoveUndo
Always use an UNDO handler with a SyncMoveUndo instruction in any procedure
that has synchronized movements (i.e. that has a SyncMoveOn instruction).
After a SyncMoveOn instruction, the movements in the task program are
synchronized with movements in other task programs. If the program pointer is
then manually moved before the SyncMoveOff instruction is executed, the
movements will still be synchronized. This can be avoided by having an UNDO

handler that includes a SyncMoveUndo instruction.

Continues on next page
68 Application manual - MultiMove

3HAC089689-001 Revision: C
© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.8 Programming recommendations

When the program pointer is manually moved out of a procedure, the UNDO handler
for that procedure is called. The SyncMoveUndo instruction will end the
synchronization if the movements currently are synchronized. If the movements
are not synchronized when the program pointer is moved, SyncMoveUndo will do
nothing. It is, in other words, never any disadvantage in using SyncMoveUndo, but
very useful if the program pointer is moved.
For more information about UNDO handlers, see Technical referencemanual - RAPID
Overview.

Coordinating against a work object
Coordinating against a work object moved by a mechanical unit in another task
can be done in two ways:

• All move instructions coordinated with the work object must be executed
when the work object is standing still. See About semi coordinated
movements on page 47.

• The robot that is coordinated with the work object and the mechanical unit
that moves the work object must be in synchronized movement mode. See
About coordinated synchronized movements on page 55.

It is not possible to coordinate against a moving work object, controlled from
another task, without being in synchronized movement mode.

Common work area
If two robots use the same work area, without being in synchronized movement
mode, precautions must be taken to avoid collisions. Make sure that only one of
the robots is in the common area at a time by using one of the following:

• WaitSyncTask
• World Zones
• I/O signal

Disabling mechanical units
Depending on the use of the option MultiMove, the safety function Safe Disable of
Drive unit can be used to avoid the risk for unexpected start-up of a mechanical
unit.
See Application manual - Functional safety and SafeMove.

Application manual - MultiMove 69
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

6 Programming
6.8 Programming recommendations

Continued

This page is intentionally left blank

7 RAPID error recovery
7.1 Error recovery for MultiMove

Error in unsynchronized mode
If an error occurs during unsynchronized mode, no other task program is affected
by the error.

Error in synchronized movement mode
If an error occurs during synchronized movement mode, the task program with the
error will stop with an error code. Because of the synchronization, the other tasks
will not continue to move. When the error has been resolved the movement can
continue in all task programs.
The semi-coordinated movement mode is considered the same as coordinated
movement mode.

Application manual - MultiMove 71
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

7 RAPID error recovery
7.1 Error recovery for MultiMove

7.2 Simple error recovery example

About this example
In this example, a division with zero causes an error during synchronized movement
mode. Since the error handler can resolve the error without any motion instructions,
the error handler does not have to consider the synchronization. The synchronized
movement mode is active the whole time and the second move instruction is started
for both robots as soon as the error handler has finished. If no other error can
occur, the T_HANDLEROB task program does not need to have an error handler.

T_PROCROB task program
...

SyncMoveOn, sync1, motion_tasks;

MoveL p101\ID:=10, v100, z10, gun2 \WObj:=wobj_handlerob;

a:=3;

b:=0;

c:=a/b;

MoveL p102\ID:=20, v100, fine, gun2 \WObj:=wobj_handlerob;

SyncMoveOff sync2;

...

ERROR

IF ERRNO = ERR_DIVZERO THEN

b:=1;

RETRY;

ENDIF

T_HANDLEROB task program
...

SyncMoveOn, sync1, motion_tasks;

MoveL p201\ID:=10, v100, z10, grip1;

MoveL p202\ID:=20, v100, fine, grip1;

SyncMoveOff sync2;

...

72 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

7 RAPID error recovery
7.2 Simple error recovery example

7.3 Asynchronously raised errors

What is an asynchronously raised error
Asynchronously raised errors can be raised by another instruction than the
instruction where the program pointer is. This means that an asynchronous error
can be raised while the robot is in the middle of a path movement. For more
information about asynchronously raised errors, see Technical reference
manual - RAPID kernel.
The technique with asynchronously raised errors allows a failing instruction in one
task program to raise an error in all other task programs with synchronized
movements.

How to raise an asynchronous error
The instruction ProcerrRecovery will raise the error ERR_PATH_STOP and stop
the movement for all task programs with synchronized movements.
Asynchronous errors can also be raised by process instructions (e.g. ArcL). These
can raise one error code (describing the cause of the error) in the task program
where the error occurred, and raise the error ERR_PATH_STOP in the other task
programs with synchronized movements.

The task programs without errors
If two task programs run synchronized move instructions and one of them raises
an asynchronous error, the movements will stop for both tasks. The task program
where nothing went wrong will then get the error ERR_PATH_STOP. This error must
be handled by an error handler. The error handler can handle ERR_PATH_STOP by
just waiting for the other task to solve its problems and then resume the movements.
By using the instruction StartMoveRetry, the execution will continue when all
tasks reach this instruction.

Independent movements in the error handler
If the error handler in one task program needs to execute a move instruction, the
synchronization must be suspended first.
The synchronization is automatically suspended by the StorePath instruction.
All tasks with synchronized movements must execute a StorePath instruction
before the synchronization is turned off and the execution can continue.
The instruction RestoPath will restore synchronization to the mode it had before
StorePath. All task programs with synchronized movements must execute the
RestoPath instruction in their error handlers before the synchronization is resumed
and the execution can continue.
Between the instructions StorePath and RestoPath, the failing task program
can move independently to solve its problem. Since RestoPath works as a
synchronization point, the other task programs will wait at this point until the
problem has been resolved.
If the task program is not in synchronized movements mode, StorePath and
RestoPath act just like without the MultiMove option. This means that the same

Continues on next page
Application manual - MultiMove 73
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

7 RAPID error recovery
7.3 Asynchronously raised errors

error handler code can handle errors that occur both in synchronized movements
mode and unsynchronized mode.
StorePath and RestoPath require the optionPath Recovery. For more information
about StorePath and RestoPath, see Application manual - Controller software
OmniCore.

74 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

7 RAPID error recovery
7.3 Asynchronously raised errors
Continued

7.4 Example of creating asynchronously raised error

About this example
In this example, a process is started by setting do_myproc to 1. The process is
then supervised and the signal di_proc_sup is set to 1 if the process fails.
If a process failure occurs during a robot movement, an interrupt calls a trap routine.
The instruction ProcerrRecovery will stop the movement and raise the error
ERR_PATH_STOP in all task programs with synchronized movements.
The T_HANDLEROB task program must have an error handler that restarts the
movement when the error has been resolved in the T_PROCROB task program. This
only requires one instruction, StartMoveRetry.

T_PROCROB task program
VAR intnum proc_sup_int;

PROC main()

...

SyncMoveOn, sync1, motion_tasks;

my_proc_on;

MoveL p101\ID:=10, v100, z10, gun1 \WObj:=wobj_handlerob;

MoveL p102\ID:=20, v100, fine, gun1 \WObj:=wobj_handlerob;

my_proc_off;

SyncMoveOff sync2;

...

ERROR

IF ERRNO = ERR_PATH_STOP THEN

my_proc_on;

StartMoveRetry;

ENDIF

ENDPROC

TRAP iprocfail

my_proc_off;

ProcerrRecovery \SyncLastMoveInst;

RETURN;

ENDTRAP

PROC my_proc_on()

SetDO do_myproc, 1;

CONNECT proc_sup_int WITH iprocfail;

ISignalDI di_proc_sup, 1, proc_sup_int;

ENDPROC

PROC my_proc_off()

SetDO do_myproc, 0;

IDelete proc_sup_int;

ENDPROC

Continues on next page
Application manual - MultiMove 75
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

7 RAPID error recovery
7.4 Example of creating asynchronously raised error

T_HANDLEROB task program
PROC main()

...

SyncMoveOn, sync1, motion_tasks;

MoveL p201\ID:=10, v100, z10, grip1;

MoveL p202\ID:=20, v100, fine, grip1;

SyncMoveOff sync2;

...

ERROR

IF ERRNO = ERR_PATH_STOP THEN

StartMoveRetry;

ENDIF

ENDPROC

76 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

7 RAPID error recovery
7.4 Example of creating asynchronously raised error
Continued

7.5 Example with movements in error handler

About this example
In this example, an asynchronous error can occur that requires the robot to move
to another position to resolve the error. The synchronization is suspended by using
StorePath in all tasks with synchronized movements, and restored by using
RestoPath.
The instruction ArcL is used in this example. This instruction handles the process
for arc welding as well as acts as a move instruction. To understand this example,
all you need to know is that it is a move instruction (similar to MoveL) which can
result in asynchronous process errors. For more information about ArcL, see
Application manual - ArcWare for OmniCore and Technical reference
manual - RAPID Instructions, Functions and Data types.

Note

Note that the T_STN1 task program must have the instructions StorePath and
RestoPath, even if there is no code between these instructions. No task program
continues to execute its error handler until all task programs execute the
StorePath instruction.

T_ROB1 task program
...

SyncMoveOn, sync1, all_tasks;

ArcL p101\ID:=10, v100, seam1, weld1, weave1, z10, gun1
\WObj:=wobj_stn1;

...

ERROR

IF ERRNO=AW_WELD_ERR OR ERRNO=ERR_PATH_STOP THEN

StorePath;

IF ERRNO=AW_WELD_ERR THEN

gun_cleaning;

ENDIF

RestoPath;

StartMoveRetry;

ENDIF

...

PROC gun_cleaning()

VAR robtarget p199;

p199 := CRobT(\Tool:=gun1 \WObj:=wobj0);

MoveL pclean, v100, fine, gun1;

...

MoveL p199, v100, fine, gun1;

ENDPROC

T_ROB2 task program
...

SyncMoveOn, sync1, all_tasks;

Continues on next page
Application manual - MultiMove 77
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

7 RAPID error recovery
7.5 Example with movements in error handler

ArcL p201\ID:=10, v100, seam2, weld2, weave2, z10, gun2
\WObj:=wobj_stn1;

...

ERROR

IF ERRNO=AW_WELD_ERR OR ERRNO=ERR_PATH_STOP THEN

StorePath;

IF ERRNO=AW_WELD_ERR THEN

gun_cleaning;

ENDIF

RestoPath;

StartMoveRetry;

ENDIF

...

PROC gun_cleaning()

VAR robtarget p299;

p299 := CRobT(\Tool:=gun2 \WObj:=wobj0);

MoveL pclean, v100, fine, gun2;

...

MoveL p299, v100, fine, gun2;

ENDPROC

T_STN1 task program
...

SyncMoveOn, sync1, all_tasks;

MoveExtJ angle_20\ID:=10, vrot50, z10;

...

ERROR

IF ERRNO=ERR_PATH_STOP THEN

StorePath;

RestoPath;

StartMoveRetry;

ENDIF

...

78 Application manual - MultiMove
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

7 RAPID error recovery
7.5 Example with movements in error handler
Continued

Index
A
Activate at Start Up, 24, 27
additional controller, 15
Allow move of user frame, 24, 27
asynchronously raised errors, 73
Auto mode, 38

B
base coordinate system, 33–34

C
calibration, 29
circular movements, 66
collision detection

MultiMove, 67
configuration, 21
Controller, 22
Controller topic, 22
coordinated, 36
coordinated synchronized movements, 55
coordinated work object, 43
coordinate systems, 29, 33
coordination, 11
corner zones, 59

D
data types, 39
deactivate tasks, 37
Deactivation Forbidden, 24, 27
dummy instructions, 62

E
ERR_PATH_STOP, 73
error recovery, 71
example applications, 12

F
FlexPendant, 35
functions, 40

I
ID, 41
identno, 39
Ind collision stop without brake, 24
independent movements, 44
instructions, 39
IsSyncMoveOn, 40

J
jogging, 36

M
main controller, 15
Mechanical Unit, 24, 27
Mechanical Unit Group, 22, 25, 27
modify position, 64
Motion, 24
Motion Planner, 24–25, 27
Motion System, 24
MotionTask, 22
motion tasks, 9
Motion topic, 24
MoveExtJ, 40

move instructions, 62
Move PP To Main, 36
MultiMove

collision detection, 67

N
NORMAL, 22

O
object coordinate system, 33–34
options, 7, 9

P
PERS, 68
positioner, 11
ProcerrRecovery, 73, 75
program example, 45, 48, 56
programming, 39

R
RAPID, 39
RAPID example, 45, 48, 56
relative calibration, 30
Relative n points, 30
RestoPath, 73, 77
robot, 11
robot speed, 63
robot system, 11

S
select tasks, 37
semi coordinated movements, 47
SEMISTATIC, 22
speed, 63
Speed Control Percent, 27
Speed Control Warning, 25, 27
STATIC, 22
StorePath, 73, 77
synchronization, 11, 47, 61
synchronizing argument, 41
syncident, 39, 68
SyncMoveOff, 40, 55
SyncMoveOn, 40, 55
SyncMoveUndo, 40, 68
system parameters, 22

T
Task, 22, 25, 27
TASK PERS, 68
task program, 11
tasks, 37, 39, 42
tool orientation, 66
Type, 22

U
UNDO, 68
Use Mechanical Unit Group, 22
Use Motion Planner, 23, 25, 27
user coordinate system, 33–34
user interface, 35

W
WaitSyncTask, 39, 47
work object, 43
world coordinate system, 33–34
World Zones, 67

Application manual - MultiMove 79
3HAC089689-001 Revision: C

© Copyright 2004-2025 ABB. All rights reserved.

Index

ABB AB
Robotics & Discrete Automation
S-721 68 VÄSTERÅS, Sweden
Telephone +46 10-732 50 00

ABB AS
Robotics & Discrete Automation
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics & Discrete Automation
No. 4528 Kangxin Highway
PuDong New District
SHANGHAI 201315, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics & Discrete Automation
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics

3H
A
C
0
89
68
9-
0
0
1,
R
ev

C
,e
n

© Copyright 2004-2025 ABB. All rights reserved.
Specifications subject to change without notice.

	Cover Page
	Table of contents
	Overview of this manual
	1 Introduction
	1.1 About MultiMove
	Purpose
	Included functionality
	Included options
	Basic approach
	MultiMove and ISO 10218-1:2011

	1.2 Terminology
	About these terms
	Term list

	1.3 Example applications
	1.3.1 About the example applications
	Consistent examples

	1.3.2 Example with unsynchronized movements
	About the example
	Illustration

	1.3.3 Example with synchronized movements
	About the example
	Illustration

	2 Installation
	2.1 Hardware installation
	Main controller and additional controller
	Cabling
	Safety data
	V line
	C line

	Visual identification
	Related information

	2.2 Software installation
	RobotWare system
	Modify the MultiMove software system
	Configure SafeMove
	Automatic configuration
	Related information

	3 Configuration
	3.1 Configuration overview
	About the system parameters
	About the examples

	3.2 System parameters
	3.2.1 Controller topic
	Task
	Mechanical Unit Group

	3.2.2 Motion topic
	Mechanical Unit
	Motion Planner
	Motion System

	3.3 Configuration examples
	3.3.1 Configuration for example with unsynchronized movements
	About this example
	Task
	Mechanical Unit Group
	Motion Planner
	Illustration

	3.3.2 Configuration for example with synchronized movements
	About this example
	Task
	Mechanical Unit Group
	Motion Planner
	Mechanical Unit
	Illustration

	4 Calibration
	4.1 Calibration overview
	Two types of calibration
	Calibrate coordinate systems

	4.2 Relative calibration
	What is relative calibration
	How to perform relative calibration

	4.3 Calibration chains
	Avoid long chains of calibrations

	4.4 Examples of coordinate systems
	4.4.1 Example with unsynchronized movements
	About this example
	Illustration
	Coordinate systems

	4.4.2 Example with synchronized movements
	About this example
	Illustration
	Coordinate systems

	5 User interface specific for MultiMove
	5.1 FlexPendant for MultiMove configuration
	About FlexPendant for MultiMove
	What is specific for MultiMove?

	5.2 FlexPendant apps
	Code
	Operate
	QuickSet, Mechanical units menu
	Jogging coordinated or uncoordinated

	5.3 Select which tasks to start with START button
	Background
	Task Panel Settings
	Selecting tasks
	Resetting debug settings in manual mode
	Switching to auto mode
	Restarting the controller
	Deselect task in synchronized mode

	6 Programming
	6.1 RAPID components
	Data types
	System data
	Instructions
	Functions
	Synchronizing argument

	6.2 Tasks and programming techniques
	Different tasks
	One task program per robot
	Additional axes in separate tasks

	6.3 Coordinated work objects
	About work objects
	What determines coordination?
	robhold
	ufprog
	ufmec
	Example 1
	Example 2

	6.4 Independent movements
	6.4.1 About independent movements
	What is independent movements
	Other dependencies than movements

	6.4.2 Example with independent movements
	Program description
	Illustration
	T_ROB1 task program
	T_ROB2 task program

	6.5 Semi coordinated movements
	6.5.1 About semi coordinated movements
	What is semi coordinated movements
	Implementation
	Advantages

	6.5.2 Example with semi coordinated movements
	Program description
	Illustration
	T_ROB1 task program
	T_ROB2 task program
	T_STN1 task program

	6.5.3 Considerations and limitations when using semi coordinated movements
	Stand still in known position
	Activate task
	Finepoints and WaitSyncTask before and after semi coordinated movement
	Dealing with a lost path
	
	Example with semi coordinated and coordinated movement

	6.6 Coordinated synchronized movements
	6.6.1 About coordinated synchronized movements
	What is coordinated synchronized movements
	Implementation
	Advantages
	Limitations

	6.6.2 Example with coordinated synchronized movements
	Program description
	Illustration
	T_ROB1 task program
	T_ROB2 task program
	T_STN1 task program

	6.7 Program execution
	6.7.1 Corner zones
	Corner zones and WaitSyncTask
	Corner zones and synchronized movements
	Dependences between synchronized instructions
	Corner zones converted to finepoints
	Example with corner zones
	Part of T_ROB1 task program:
	Part of T_ROB2 task program:

	6.7.2 Synchronization behavior
	Synchronization point
	Other instructions than movements
	Example
	Part of T_ROB2 task program:
	Part of T_ROB2 task program:

	6.7.3 Dummy instructions
	About dummy instructions
	Example with dummy move instructions
	Part of a task program

	6.7.4 Motion principles
	Robot speeds
	Example of robot speeds

	6.7.5 Modify position
	About modifying positions
	Modify position in unsynchronized mode
	Modify position in synchronized movement mode
	Modify circular position in synchronized movement mode

	6.7.6 Moving a program pointer
	Moving PP in unsynchronized mode
	Moving PP in synchronized movement mode
	Example

	6.7.7 Tool orientation at circular movements
	Coordinated circular move instructions
	Example

	6.7.8 Applications affected by MultiMove
	Collision detection for MultiMove robots
	World Zones

	6.8 Programming recommendations
	Declare syncident globally in task
	Do not reuse syncident
	Declaring tools, work objects and payloads
	Changing a PERS
	Use SyncMoveUndo
	Coordinating against a work object
	Common work area
	Disabling mechanical units

	7 RAPID error recovery
	7.1 Error recovery for MultiMove
	Error in unsynchronized mode
	Error in synchronized movement mode

	7.2 Simple error recovery example
	About this example
	T_PROCROB task program
	T_HANDLEROB task program

	7.3 Asynchronously raised errors
	What is an asynchronously raised error
	How to raise an asynchronous error
	The task programs without errors
	Independent movements in the error handler

	7.4 Example of creating asynchronously raised error
	About this example
	T_PROCROB task program
	T_HANDLEROB task program

	7.5 Example with movements in error handler
	About this example
	T_ROB1 task program
	T_ROB2 task program
	T_STN1 task program

	Index

